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Abstract

With the rapid development of energy storage technology, it is significant to evaluate the
operating status of lithium-ion batteries efficiently and accurately, so as to ensure their safe
operation and reduce the probability of accidents. For the problems of long simulation time
and low accuracy in existing models, this paper proposes a construction method of lithium-
ion batteries thermoelectric coupling model based on digital twin. First, the digital twin
structure system of lithium-ion batteries is proposed. Second, considering the coupling
effects of the thermodynamic model and the equivalent circuit model, the thermoelectric
coupling model is constructed based on the digital twin platform ANSYS TwinBuilder.
The thermodynamic model is reduced in order and the simulation time is reduced to sec-
ond level, which improves the simulation efficiency and meets the real time simulation
requirements of the digital twin. Furthermore, considering that the operating parame-
ters of lithium-ion batteries are variable, the parameters of the equivalent circuit model
are identified online based on the variable forgetting factor recursive least squares algo-
rithm. It updates parameters of the model and improves the simulation accuracy. Finally,
the efficiency and accuracy of the model are verified through simulation analysis.

1 INTRODUCTION

Under the background of dual carbon, the traditional power sys-
tem is transforming into the power system with new energy
as the main body. New energy has the characteristics of large
randomness and strong volatility. A high proportion of new
energy connected to the grid will affect the power system
stability [1, 2]. The coordinated scheduling of lithium-ion bat-
teries and new energy plays an important role in promoting
the new power systems construction. However, lithium-ion
batteries safety accidents such as fires and explosions occur
frequently around the world. Thermoelectric conditions are
the key factors affecting their safe operation. Considering the
thermoelectric coupling of lithium-ion batteries, it is of great
significance to evaluate the operating conditions such as tem-
perature and voltage quickly and accurately. According to the
evaluation results, operators can take corresponding measures
to reduce the probability of accidents [3, 4].

The concept of digital twin was first proposed by Professor
Grieves in 2003. It was defined as a three-dimensional model,
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including physical entity, digital counterpart and a link mech-
anism between them [5]. At present, digital twin has carried
out a large number of exploratory research and demonstra-
tion applications in aviation, ocean, forestry, transportation and
other fields [6, 7]. However, digital twin research in the field
of batteries is still in its infancy. Research on batteries digital
twin technology can bring new solutions to accurately assess the
operating status and then manage batteries. At present, there
is still a lack of systematic modeling theory, evaluation meth-
ods and application scope for batteries digital twin. Therefore,
research on the construction method of lithium-ion batteries
thermoelectric coupling model based on digital twin has refer-
ence significance for the development of batteries digital twin
technology.

For the lithium-ion batteries thermoelectric coupling
research, there are mainly two types: electrochemical-thermal
coupling model [8, 9] and electric-thermal coupling model
[10–12]. The electrochemical-thermal coupling model describes
the electrochemical process inside batteries through partial
differential equations. Differential equations contain many
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2 LIU ET AL.

unknown variables and are complex. Identifying parameters
and solving equations are difficult. The electrochemical-thermal
coupling model is usually used in the fields of batteries structure
and parameters design. However, it is rarely used in engineering
[10]. For the electric-thermal coupling model, ref. [13] estab-
lished a batteries thermal model based on the mathematical
principles of heat conduction and surface heat convection
heat dissipation. It was coupled with an equivalent circuit
model to build the coupled thermoelectric model. The model
parameters were identified offline to estimate temperature and
voltage. Ref. [14] established a thermal mathematical model
based on the mathematical principles of thermal transfer and
thermal generation. Considering the temperature influence
on the changes of equivalent circuit model parameters, a
thermoelectric coupling model was established. The charging
strategy was optimized based on the improved particle swarm
optimization algorithm and the temperature during the charg-
ing process was estimated. Ref. [15] used the circuit form to
build the lithium-ion batteries thermodynamic model. Circuit
element expressions were derived based on the mathematical
mechanisms of heat generation and heat transfer. And it was
coupled with the equivalent circuit model to construct the
thermoelectric coupling model. Considering the influence of
batteries surface heat transfer conditions and environmental
changes on model parameters, an adaptive estimation algo-
rithm based on Kalman filter was proposed for temperature
estimation. The above researches are based on mathematical
principles to construct thermodynamic models. The parameters
of the thermoelectric coupling model are easily affected by
changes in the environment and operating conditions. It is
difficult to fully describe the environmental changes based on
the mathematical principles of thermodynamics. Compared
with using Computational Fluid Dynamics (CFD) simulation
analysis software (ANSYS Icepak, ANSYS Fluent) to construct
the three-dimensional high-precision thermodynamic model,
the simulation accuracy is lower. Therefore, it is important to
construct the thermoelectric coupling model combined with
the three-dimensional high-precision thermodynamic model
and update model parameters online with full consideration of
external conditions. Ref. [16] used ANSYS Fluent to establish a
three-dimensional thermal model of the battery pack. Based on
this model, the internal temperature of the battery pack under
different external cooling schemes was estimated and analyzed.
Ref. [17] established the three-dimensional cell thermal model
based on finite elements. The first-order RC circuit model and
thermal model were embedded in the volume microelement
to realize thermoelectric coupling model establishment. The
temperature distribution of the cell were obtained. Ref. [18]
proposed the collaborative thermal simulation framework
and used Modelica and ANSYS Fluent to establish equivalent
circuit model and thermal model, respectively. Considering the
influence of temperature on the equivalent circuit parameters,
the equivalent circuit model was coupled with the thermal
model using Python. The temperature field online simulation
was carried out using the coupled model. The CFD simulation
analysis methods used in the above researches generally have
the problem of long simulation time. But multi-physics real time

simulation is the basis of the lithium-ion batteries digital twin
[19]. The digital twin needs to map the operating state of the
lithium-ion battery in real time. CFD simulation is difficult to
meet the real-time requirements of the digital twin. Therefore,
it is necessary to use techniques such as model reduction to
speed up the model solution and improve simulation efficiency.

For the problems of low simulation accuracy and long simu-
lation time analyzed above in the current research, this paper
proposes a construction method of the lithium-ion batteries
thermoelectric coupling model based on digital twin. The main
contribution of this paper is:

1. Considering the influence of thermoelectric coupling on
batteries operating states, the lithium-ion batteries thermo-
electric coupling model based on digital twin is established
to realize accurate evaluation of the operating state.

2. Based on ANSYS TwinBuilder, the order reduction of the
thermodynamic model is realized. The simulation time is
reduced and the calculation efficiency is improved, while
ensuring the simulation accuracy of the model. This meets
the real time simulation requirements of the lithium-ion
batteries digital twin.

3. Based on the variable forgetting factor recursive least
squares(VFFRLS) algorithm, the parameters of the equiv-
alent circuit model are identified online. In this way, the
parameters of the lithium-ion battery thermoelectric cou-
pling model are updated to improve the accuracy of the
prediction results.

The remaining parts of this paper are as follows. Sec-
tion 2 presents lithium-ion batteries digital twin structure system
considering thermoelectric coupling. Section 3 presents con-
struction of lithium-ion batteries thermoelectric coupling model
based on digital twin. Section 4 presents parameters identi-
fication. Experiment results and discussions are presented in
Section 5. Finally, the conclusions are drawn in Section 6.

2 LITHIUM-ION BATTERIES DIGITAL
TWIN STRUCTURE SYSTEM
CONSIDERING THERMOELECTRIC
COUPLING

The key to digital twin is to build a high-fidelity virtual model
of physical devices. It can evaluate the operating state of the
real physical world and feedback corresponding information to
make decisions. Therefore, this paper proposes the lithium-ion
batteries digital twin structure system considering thermoelec-
tric coupling, which consists of five parts: physical device,
virtual model, service system, twin data and connection system,
as shown in Figure 1 [5, 20].

2.1 Physical device

The physical device is the physical basis of the lithium-ion bat-
teries thermoelectric coupling model based on digital twin, that
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LIU ET AL. 3

FIGURE 1 Lithium-ion batteries digital twin structure system considering
thermoelectric coupling.

is, the real devices of the lithium-ion batteries. Various sensors
are deployed on physical devices to monitor environmental data
and operating status in real time.

2.2 Virtual model

The virtual model is the core of the lithium-ion batter-
ies thermoelectric coupling model based on digital twin. It
integrates system models, correction algorithms, simulation cal-
culations and other key elements. It adopts a “model-driven”
+ “data-driven” hybrid approach to correct and update model
parameters, which not only preserves the physical characteristics
of the model, but also improves the simulation accuracy [21].

2.3 Service system

The service system integrates various information systems such
as evaluation, control and optimization. It provides intelligent
operation and precise control based on physical devices and vir-
tual models. This prevents overcharging, over-discharging and
high temperature operation, thereby ensuring the safe and stable
operation of lithium-ion batteries.

2.4 Twin data

It includes data related to physical devices, virtual models and
service systems. And it is constantly updated and optimized with
the generation of real-time data. Twin data is the core driver of
digital twin operation.

2.5 Connection system

The connection system connects the above four parts in pairs
to enable effective and real-time data transmission. In this way,

FIGURE 2 Second-order RC equivalent circuit model.

real-time interaction is realized to ensure the consistency and
iterative optimization among various parts.

3 CONSTRUCTION OF LITHIUM-ION
BATTERIES THERMOELECTRIC
COUPLING MODEL BASED ON DIGITAL
TWIN

Based on the second-order RC equivalent circuit principle and
thermodynamic principle of lithium-ion batteries, this section
uses MATLAB Simulink and ANSYS Icepak to construct the
equivalent circuit model and thermodynamic model, respec-
tively. The lithium-ion batteries thermoelectric coupling model
based on digital twin is established in ANSYS TwinBuilder. At
last the model operation mechanism is explained in detail.

3.1 Equivalent circuit model

The equivalent circuit model represents the lithium-ion battery
in a specific circuit form. Common equivalent circuit models
include Thevenin model, second-order RC model and GNL
model. The second-order RC model has the advantages of rel-
atively simple structure, real-time solution and high accuracy of
dynamic and static characteristics description. Therefore, this
paper chooses the second-order RC model for research and its
equivalent circuit model is shown in Figure 2 [22].

In the figure, E represents open circuit voltage; Re represents
electrochemical polarization resistance; Ce represents electro-
chemical polarization capacitance; Rd represents the electro-
chemical concentration polarization resistance; Cd represents
the electrochemical concentration polarization capacitance; Ro
represents ohmic internal resistance, which is composed of elec-
trode material, electrolyte, diaphragm resistance and contact
resistance of various parts; It represents the current flowing
through Ro; Uo represents the terminal voltage; Ue repre-
sents the voltage of the electrochemical polarization resistance;
Ud represents the voltage of the electrochemical concentration
polarization resistance; I1, I2, I3 and I4 represent the current
flowing through Re, Ce, Rd and Cd, respectively; T represents
the temperature.

According to the equivalent circuit model shown in Figure 2,
the relationship between various state parameters of batteries is
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4 LIU ET AL.

obtained by combining Kirchhoff’s law and circuit theory.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

SOC = SOC0 −
It

CN
∫ 𝜂Δtdt

∫ I2dt

Ce
= I1Re = Ue

∫ I4dt

Cd
= I3Rd = Ud

Uo = E − ItRo −Ue −Ud

, (1)

where SOC represents the state of charge; SOC0 represents the
initial SOC; CN represents the rated capacity of the battery; η
represents the Coulomb efficiency; △t represents the sampling
period.

The state equation of the equivalent circuit model is obtained
by discretization Formula (1).

⎡⎢⎢⎢⎣
SOCk+1

Ue,k+1

Ud,k+1

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 e
−
Δt

𝜏e 0

0 0 e
−
Δt

𝜏d

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
SOCk

Ue,k

Ud,k

⎤⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
𝜂Δt

CN

Re

⎛⎜⎜⎝1 − e
−
Δt

𝜏e

⎞⎟⎟⎠
Rd

⎛⎜⎜⎝1 − e
−
Δt

𝜏d

⎞⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It,k, (2)

where k represents discrete computing ordinal; τd and τe both
represent time constants, τd = RdCd, τe = ReCe.

Then the terminal voltage output equation can be obtained.

Uo,k = E − It,kRo −Ue,k −Ud,k. (3)

The terminal voltage can be substituted into Bernardi
equation to obtain the thermal power of the batteries [23].

q =
[
It (Uo − E ) + ItT (𝜕E∕𝜕T )

]
∕V , (4)

where q represents the heat generation power; It(Uo-E) repre-
sents the irreversible thermal power caused by the difference
between the terminal voltage and the open voltage; ItT(∂E/∂T)

represents reversible reaction thermal power, depending on cell
temperature, current and entropy coefficient; V represents the
volume of batteries.

3.2 Thermodynamic model

Lithium-ion batteries are their own heat sources during oper-
ation. Their heat generation power can be calculated by the
above equivalent circuit model. The output current has no fixed
change rule. Therefore, the heat dissipation process of lithium-
ion batteries is an unsteady dynamic heat transfer process.
According to the energy conservation equation, the three-
dimensional heat dissipation model of lithium-ion batteries can

FIGURE 3 Thermodynamic model.

be described as follows [24].

𝜌C
𝜕T

𝜕t
= ∇ ⋅ (𝜆∇T ) + q. (5)

The left side of the formula represents the total heat added.
The first term on the right side of the formula is the heat
added by heat convection between batteries and the exter-
nal environment. The second term on the right side of the
formula is the heat added by the internal heat generation. ρ
represents the average density; C represents the average spe-
cific heat capacity; λ represents the thermal conductivity in a
direction.

The above formula is transformed into the rectangular
coordinate form.

𝜌C
𝜕T

𝜕t
=

𝜕

𝜕x

(
𝜆x

𝜕T

𝜕x

)
+

𝜕

𝜕y

(
𝜆y

𝜕T

𝜕y

)
+

𝜕

𝜕z

(
𝜆z

𝜕T

𝜕z

)
+ q, (6)

where λx, λy and λz represent the thermal conductivity in x, y and z
direction, respectively.

In this paper, the CFD simulation software ANSYS Icepak is
used to build the thermodynamic model of lithium ion batteries,
as shown in Figure 3.

Calculating the lithium-ion batteries temperature based on
ANSYS Icepak simulation is the process of solving Formula (6).
First, the heat production power of the batteries is input into
the constructed thermodynamic model. Second, the boundary
conditions is set and the calculation is solved. Finally, the tem-
perature changes of the monitoring points are obtained. In this
way, high-fidelity thermodynamic modeling and visualization of
lithium batteries can be realized.

3.3 Lithium-ion batteries thermoelectric
coupling model construction based on digital
twin

Considering the highly convoluted multi-physics nature of
lithium-ion batteries, the equivalent circuit model parameters
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LIU ET AL. 5

FIGURE 4 The operation mechanism of digital twin model.

are functions of temperature and SOC, and the heat genera-
tion power depends on SOC, temperature, charge and discharge
mode. The equivalent circuit model and the thermal model are
mutually coupled and interacting [25].

The lithium-ion batteries thermoelectric coupling model
based on digital twin needs to map the batteries operating
status in real time. The real-time simulation requirements are
high. At present, CFD simulation using ANSYS Icepak has the
advantages of high calculation accuracy and three-dimensional
visualization, but the calculation takes a long time.

During the working process of the lithium-ion batteries, the
heat generation power and the parameters of the equivalent cir-
cuit model change in real time. The model needs to be run
repeatedly, which makes it difficult to meet the real-time require-
ments. Therefore, it is necessary to find a model order reduction
tool that can reduce the convergence difficulty, speed up the
model solving and maintain the simulation accuracy [26].

In this paper, the order reduction technology is used to
reduce the order of the thermodynamic model, and then based
on the ANSYS Twinbuider platform, the lithium-ion batteries
thermoelectric coupling model based on digital twin is con-
structed. The calculation time is reduced to the second level,
which greatly improves the simulation efficiency. And the result
has the same accuracy as the CFD simulation, realizing accurate
evaluation of the operating state of the lithium-ion batteries.

The operation mechanism of model is shown in Figure 4.
Equivalent circuit model and thermodynamic model are con-
structed in MATLAB Simulink and ANSYS Icepak, respec-
tively. Both the equivalent circuit model and thermodynamic
model are imported into the ANSYS TwinBuilder platform.
The thermodynamic model is reduced to Reduced-Order
Model(ROM) . The ROM can be connected with the equivalent
circuit model to form the lithium-ion batteries thermoelectric
coupling model [27]. The specific process of importing the ther-
modynamic model into the ANSYS TwinBuilder platform for
order reduction is as follows. Transient CFD simulations are
performed using ANSYS Icepak to generate response curves

for lithium-ion batteries. The response curve is fed to ANSYS
TwinBuilder ROM application to create the ROM of the bat-
teries. It has the accuracy of CFD analysis with the simulation
speed in seconds.

At the beginning of the simulation, the initialized simula-
tion parameters include: current, initial SOC, initial temperature,
simulation time, simulation step size, circuit model parame-
ters and thermodynamic model parameters. Equivalent circuit
model calculates the batteries terminal voltage and real-time
heat generation power according to Formulas (3) and (4). It
sends them to thermodynamic model. Thermodynamic model
outputs the temperature of the batteries and updates the
equivalent circuit model parameters. Equivalent circuit model
calculates the new heating power according to the modified cir-
cuit model parameters. It will be used in the next calculation
to model the coupled thermoelectric process with temperature
correction.

4 PARAMETERS IDENTIFICATION

In this section, the least squares algorithm is used to identify the
parameters of the equivalent circuit model to obtain the initial
parameters set. Secondly, based on the recursive least squares
algorithm(RLS) and VFFRLS, the parameters of the equivalent
circuit model are identified and updated online. It improves
the accuracy of the model and enhances interactive feedback
between the thermoelectric coupling model and the lithium-ion
batteries. Finally, the parameters of the thermodynamic model
are identified.

4.1 Identification of equivalent circuit
model initial parameters

The initial parameters of the equivalent circuit model include
the corresponding relationship between open circuit voltage
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6 LIU ET AL.

and SOC, resistance and capacitance [28]. Hybrid pulse power
characteristic experiments (HPPC) are often used for initial
parameters identification. The specific experimental procedure
is as follows [29]. The batteries are placed in an incubator,
charged to 100% SOC with constant current and constant volt-
age, and discharged with constant current after fully standing.
Then they are discharged 10% SOC each time and the exper-
iment is ended when the discharge cut-off voltage is reached.
The voltage and current curves are measured at different SOC
points (0–100%, interval 10%), different temperatures (10◦C,
25◦C, 35◦C), and different charge and discharge currents (−2A,
2A, 6A, 14A). The equivalent circuit model parameters includ-
ing Ro, Re, Rd, Ce and Cd are obtained by least squares fitting.
Linear interpolation is performed on three dimensions of SOC,
temperature and charge/discharge current. Finally, the initial
parameters of the equivalent circuit model are identified.

4.2 Online identification of equivalent
circuit model parameters

The actual operation of lithium-ion batteries is a highly nonlin-
ear time varying system. Their operating parameters are affected
by factors such as temperature and aging, so they are variable.
The lithium-ion batteries thermoelectric coupling model based
on digital twin needs to have the function of approaching the
batteries entity in the whole life cycle. However, with the con-
tinuous operation of the batteries, the least squares parameter
identification method has the problem that the model param-
eters do not match the actual situation. In order to solve the
above problems and improve the accuracy of the equivalent
circuit model, the online parameter identification algorithm is
introduced to update the lithium-ion batteries thermoelectric
coupling model parameters.

In this paper, the RLS algorithm is used to realize the
online parameters identification of the equivalent circuit model.
The RLS algorithm is a commonly used parameter estimation
method. It enables online parameter estimation in changing
environments. It is an effective method for systems with high
real-time requirements. The principle of the algorithm can be
described as follows [30].

⎧⎪⎪⎨⎪⎪⎩

𝜃(k) = 𝜃(k − 1) + K (k)[y(k) − 𝜓T(k)𝜃(k − 1)]

K (k) = P (k − 1)𝜓(k)[𝜓T(k)P (k − 1)𝜓(k) + 1]
−1

P (k) = [I − K (k)𝜓T(k)]P (k − 1)

, (7)

where θ(k) represents the estimated value of the parameter at
time k; y(k) represents the actual observed value at time k; Ψ(k)
represents the observation vector at time k; ΨT(k) represents
the transposition of the observation vector at time k; ΨT(k)θ(k-
1) represents the forecast value at time k; y(k)-ΨT(k)θ(k-1)
represents the forecast error at time k; P(k) represents the
covariance matrix, which reflects the estimation accuracy of the
algorithm; I represents the identity matrix; K(k) represents the

gain factor at time k, multiplying the gain factor and the pre-
diction error to obtain the correction item; finally adding the
correction term and θ(k-1) to obtain the estimated value of the
parameter at time k.

However, the covariance matrix is a decreasing positive defi-
nite matrix in the RLS algorithm. It decreases as the number of
iterations increases. The parameter correction ability gradually
weakens, and filter saturation occurs. The VFFRLS algorithm
with forgetting factor λ is introduced to identify the parameters
of the equivalent circuit model online. The VFFRLS algo-
rithm is an online recursive least squares algorithm, which is
mainly used for parameter identification. VFF stands for “Vari-
able Forgetting Factor”, that is, the variable forgetting factor.
The forgetting factor is dynamically adjusted according to the
dynamic changes of the system to balance the adaptability and
robustness of the model. It can weaken the influence of old data
and increase the effect of new observation data. The recursive
formula of VFFRLS can be described as follows.

⎧⎪⎪⎨⎪⎪⎩

𝜃(k) = 𝜃(k − 1) + K (k)[y(k) − 𝜓T(k)𝜃(k − 1)]

K (k) = P (k − 1)𝜓(k)[𝜓T(k)P (k − 1)𝜓(k) + 1]
−1

P (k) =
1

𝜆
[I − K (k)𝜓T(k)]P (k − 1)

. (8)

The above VFFRLS is applied to the equivalent circuit model
of lithium-ion batteries. Let the input be the current It, and the
output be y = E-Uo. According to Kirchhoff law and Laplace
transform, the frequency domain expression of the equivalent
circuit model is:

y(s) = It(s)(Ro +
Re

1 + ReCes
+

Rd

1 + RdCds
). (9)

Then the model transfer function can be obtained as follows.

G (s) = Ro +
Re

1 + ReCes
+

Rd

1 + RdCds
. (10)

The transfer function is turned into a common denominator.

G (s) =
Ros2 +

Ro𝜏e+Ro𝜏d+Re𝜏d+Rd𝜏e

𝜏e𝜏d

s

s2 +
𝜏e+𝜏d

𝜏e𝜏d

s +
1

𝜏e𝜏d

+

Ro+Re+Rd

𝜏e𝜏d

s2 +
𝜏e+𝜏d

𝜏e𝜏d

s +
1

𝜏e𝜏d

. (11)

The bilinear transformation method is used to discretize
the Formula (11). Let s = (2/T)(1-z−1)/(1+z−1), the discrete
transfer function can be obtained as follows.

G (z−1) =
𝛽0 + 𝛽1z−1 + 𝛽2z−2

1 + 𝛼1z−1 + 𝛼2z−2
, (12)

 17521424, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rpg2.12823 by Z

hejiang U
niversity, W

iley O
nline L

ibrary on [16/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LIU ET AL. 7

where α1, α2, β0, β1 and β2 are undetermined coefficients. Thus,
the difference equation after the frequency domain expression
discretization can be obtained as:

y(k) = −𝛼1y(k − 1) − 𝛼2y(k − 2) + 𝛽0It(k)

+𝛽1It(k − 1) + 𝛽2It(k − 2)
. (13)

Let θ = [α1, α2, β0, β1, β2], Ψ(k) = [-y(k-1) -y(k-2) It(k) It
(k-1) It (k-2)].

Formula (13) can be converted to the form of least square
y(k) = ΨT(k)θ+e(k), and solved using the VFFRLS algorithm.
Let z−1 = (2/T-s)/(2/T+s). Bilinear inverse transformation is
performed on the discrete transfer function.

G (s) =
T 2 (𝛽0 − 𝛽1 + 𝛽2 ) s2 + 4T (𝛽0 − 𝛽2 ) + 4 (𝛽0 + 𝛽1 + 𝛽2 )

T 2 (1 − 𝛼1 + 𝛼2 ) s2 + 4T (1 − 𝛼2 ) s + 4 (1 + 𝛼1 + 𝛼2 )
.

(14)

Formula (14) is simplified according to Formula (11).

G (s) =

(𝛽0−𝛽1+𝛽2 )

1−𝛼1+𝛼2
s2 +

4(𝛽0−𝛽2 )

T (1−𝛼1+𝛼2 )
s +

4(𝛽0+𝛽1+𝛽2 )

T 2(1−𝛼1+𝛼2 )

s2 +
4(1−𝛼2 )

T (1−𝛼1+𝛼2 )
s +

4(1+𝛼1+𝛼2 )

T 2(1−𝛼1+𝛼2 )

. (15)

Authors compare Formula (15) and Formula (11), and use
the coefficient correspondence method to obtain the equivalent
circuit model parameters calculation formula.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ro =
𝛽0 − 𝛽1 + 𝛽2

1 − 𝛼1 + 𝛼2

𝜏e𝜏d =
T 2(1 − 𝛼1 + 𝛼2)
4(1 + 𝛼1 + 𝛼2)

𝜏e + 𝜏d =
T (1 − 𝛼2)

1 + 𝛼1 + 𝛼2

Ro + Re + Rd =
𝛽0 + 𝛽1 + 𝛽2

1 + 𝛼1 + 𝛼2

Ro(𝜏e + 𝜏d) + Re(𝜏e + 𝜏d) =
T (𝛽0 − 𝛽2)
1 + 𝛼1 + 𝛼2

. (16)

The coefficients α1, α2, β0, β1 and β2 in the expression can
be solved by VFFRLS recursive Formula (8). Then the parame-
ters of the equivalent circuit model can be obtained by solving
Formula (16). When a set of new data is obtained at time k+1,
new model parameters at time k+1 can be obtained according
to the above analysis. Every time a set of new data is obtained,
recursion is performed to realize online identification of model
parameters. The concept of twinning rate is introduced to rep-
resent the above-mentioned model update speed. It is defined
as the update time of the digital twin model and the twinning
rate value can be set according to the actual update require-
ments of the model. This method fully considers the impact of
changes in lithium-ion batteries thermoelectric model operating

FIGURE 5 Algorithm flow chart.

parameters. It makes full use of interactive simulation among
physical devices, sensing devices, and operational data. In this
way, the digital twin model can enhance the high-fidelity virtual-
real mapping between the physical devices and the digital twin
models. The specific implementation process is shown in the
Figure 5.

4.3 Thermodynamic model parameters
identification

According to Formula (6), determining the parameters value of
ρ, C, λx, λy and λz can obtain the temperature of monitoring
points along with the running time [26].
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8 LIU ET AL.

4.3.1 Average density ρ

Due to complex internal structures of batteries, it is difficult to
express them in detail when modeling. Therefore, the average
density ρ is used to approximate the calculation.

𝜌 =

∑
mi∑
Vi

, (17)

where i represents the battery cell number; ∑mi represents the
mass sum of the internal materials; ∑Vi represents the volume
sum of the internal materials.

4.3.2 Average specific heat capacity C

The average specific heat capacity calculation method is to mea-
sure the specific heat capacity of each material inside the battery,
and then use the mass weighted method to calculate.

C =

∑
Cimi∑

mi

, (18)

where Ci represents the specific heat capacity of each material
inside the battery.

4.3.3 Thermal conductivity λx, λy, λz

The internal composition of the battery is complex, and the
difference in thermal conductivity of materials makes the ther-
mal conductivity calculation difficult. Assuming that the battery
plate is perpendicular to the x axis, heat transfer along the y and
z axis is regarded as being transferred between plates in parallel,
and heat transfer along the x axis is regarded as being trans-
ferred between plates in series. The thermal conductivity can be
calculated by the following formula.

𝜆x =
l∑ dxi

𝜆i

=
l

dxp

𝜆p

+
dxn

𝜆n

+
dx j

𝜆 j

, (19)

𝜆y =
∑ 𝜆i dyi

b
=
𝜆pdyp + 𝜆ndyn + 𝜆 j dy j

b
, (20)

𝜆z =
∑ 𝜆i dzi

h
=
𝜆pdzp + 𝜆ndzn + 𝜆 j dz j

h
, (21)

where λp, λn and λj, respectively, represent the thermal conduc-
tivity of the positive electrode, negative electrode and separator
inside the battery; dxp dxn dxj, dyp dyn dyj and dzp dzn dzj repre-
sent the thicknesses of the positive electrode, negative electrode
and separator along the x, y and z axis directions, respectively; l,
b and h, respectively, represent the length, width and height of
the battery along the x, y and z axes.

4.3.4 Boundary conditions

Boundary condition 1: the temperature of batteries at the initial
moment:

T (x, y, z, 0) = T0. (22)

Boundary Condition 2: Newton Law of Cooling:

−𝜆x
𝜕T

𝜕x
= 𝛼(T − T∞ ), x = 0, l , (23)

−𝜆y
𝜕T

𝜕y
= 𝛼(T − T∞ ), y = 0, b, (24)

−𝜆z
𝜕T

𝜕z
= 𝛼(T − T∞ ), z = 0, h, (25)

where T0 represents the initial temperature; α represents the
convective heat transfer coefficient between the surround-
ing environment and batteries; T∞ represents the ambient
temperature.

5 RESULTS AND DISCUSSION

This paper takes a commercial lithium-ion battery cell and
battery module as the research object to carry out experimen-
tal verification. The rated capacity of the battery cell is 2Ah.
The battery module is composed of 15 battery cells, which is
arranged in the 3×5 structure. The rated capacity of the battery
module is 30Ah. The three-dimensional structure of the battery
module is shown in Figure 3 above. For the facilitate subse-
quent description, the battery module is numbered as shown
in Figure 6.

To simplify the model, the following assumptions are
made:

1. the internal materials are isotropic;
2. the density and specific heat capacity of the constituent

materials remain unchanged from the influence of the
external environment;

3. the thermal conductivity remains constant in all directions
and positions;

4. the internal current density is equal at each position when
working;

5. only heat conduction and heat transfer are considered inside
batteries.

Considering the key factors affecting the temperature distri-
bution, the lithium-ion battery cell is simplified to be composed
of positive electrode material, negative electrode material, shell,
positive lug and negative lug. After searching the manual and
related literature, the thermodynamic parameters are shown in
Table 1.
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LIU ET AL. 9

FIGURE 6 Arrangement and numbering of the battery module.

TABLE 1 Thermodynamic parameters.

Parameters

Density

(kg/m3)

Thermal

conductivity

(W/(m⋅K))

Positive electrode material 2840 3.9

Negative electrode material 1617 3.3

Shell 7817 14.4

Positive lug 2700 240

Negative lug 8933 387.6

According to Formulas (17)—(25), it can be calculated that
average density ρ = 2179 kg/m3, the average specific heat
capacity C = 1000J(kg⋅K), and the thermal conductivities along
x, y, z directions are λx = 3 W/(m⋅K), λy = 30 W/(m⋅K),
λz = 30 W/(m⋅K).

In order to verify the calculation efficiency and accuracy of
the digital twin model, this paper conducts simulation analy-
sis from three aspects: whether to use reduced order model,
RLS and VFFRLS algorithm voltage prediction accuracy, and
verification of current discharge at different rates.

FIGURE 7 Simulation time comparison of different battery types in
ANSYS Icepak and ANSYS TwinBuilder.

5.1 Whether to use reduced order model

At the ambient temperature of 20◦C, firstly, four battery types
including 1 cell, 5 cells, 10 cells and battery module (15 cells)
are selected for modeling and temperature field simulation in
ANSYS Icepak. A step response file is also generated. Then,
ANSYS TwinBuilder generates an LTI ROM reduced order
model based on the above step response file. Finally, the
reduced order model is used to simulate the temperature field.
Considering that the simulation time of the three-dimensional
high-precision thermodynamic model of lithium-ion battery is
longer than that of the reduced-order model established in
ANSYS TwinBuilder, the mathematical mechanism model of
lithium-ion battery mentioned in the Section 1 introduction can
also be regarded as a reduced-order model. Based on the math-
ematical principles of thermal transfer and thermal generation,
authors use MATLAB Simulink to construct a mathematical
mechanism thermodynamic model of lithium-ion batteries. In
order to verify the computational efficiency of the reduced-
order model established in ANSYS TwinBuilder, the author
compared the simulation time of the three models. The simula-
tion time of different battery types in ANSYS Icepak, MATLAB
Simulink and ANSYS TwinBuilder is shown in Figure 7.

It can be seen from Figure 7 that after reducing the order
of the thermodynamic model based on ANSYS TwinBuilder,
the battery simulation time is reduced from minutes to seconds.
Compared with the three-dimensional high-precision model,
the simulation time reduction reaches 99%, and the calcula-
tion efficiency is significantly improved. As the simulation scale
expanded from 1 cell to the battery module (15 cells), the
simulation time of ANSYS Icepak increases by nearly 2 min,
but the simulation time of ANSYS TwinBuilder and MATLAB
Simulink remains at the second level. The simulation time of
the mechanism model built in MATLAB Simulink is longer than
that of the reduced-order model built in ANSYS TwinBuilder.

The three-dimensional high-precision model can simply and
fully consider the impact of environment and operating state

 17521424, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rpg2.12823 by Z

hejiang U
niversity, W

iley O
nline L

ibrary on [16/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 LIU ET AL.

FIGURE 8 Simulation temperature and error of 1 cell in ANSYS Icepak
and ANSYS TwinBuilder.

changes on model parameters. It is obvious that the simula-
tion accuracy of the model established in ANSYS Icepak is
the highest. At the same time, according to Figure 7, the sim-
ulation efficiency of the reduced-order model established in
ANSYS TwinBuilder is the highest. Therefore, 1 cell is selected
for comparative analysis in the simulation temperature changes
of ANSYS Icepak and ANSYS TwinBuilder to prove the sim-
ulation accuracy of the reduced-order model. The comparison
results are shown in Figure 8.

It can be seen from Figure 8 that the temperature simulation
results based on ANSYS TwinBuilder are almost the same as
those of ANSYS Icepak. There is a certain error at the begin-
ning of the simulation, and as the simulation time prolongs,
the error gradually decreases and remains within 0.1◦C. There-
fore, the reduced order model not only has the CFD simulation
accuracy but also greatly improves the simulation efficiency. It
realizes multi-physics real time simulation and provides an effec-
tive method for the construction of thermoelectric coupling
model of lithium-ion batteries based on digital twin.

5.2 RLS and VFFRLS algorithm voltage
prediction accuracy

At the ambient temperature of 20◦C, the discharge experiment
is carried out for the battery module. The voltage data of each
battery cell is obtained. Considering that the center tempera-
ture of the battery module is high and the risk probability is
high, this paper selects the center battery cell ⑧ of the battery
module for algorithm verification. The obtained battery cell ⑧
voltage and current data is analyzed. The RLS algorithm and
VFFRLS algorithm are used to identify the parameters of the
equivalent circuit model online. The twinning rate value is set
to 1 s. The simulation voltage is calculated by using the iden-
tification results, and compared with the experimental voltage
to verify the identification accuracy. The comparison results are
shown in Figure 9.

It can be seen from the figure that the simulated voltage
obtained from the identification results of the RLS and VFFRLS

FIGURE 9 The actual voltage and simulated voltage calculated based on
the RLS and VFFRLS algorithm.

TABLE 2 Comparison of error evaluation indicators.

RLS VFFRLS

MAE 0.0015 0.0009

RMSE 0.0057 0.0029

algorithms almost completely coincides with the actual voltage
results. But the VFFRLS algorithm is more accurate at the end
of the simulation. In order to compare the parameter identifi-
cation accuracy of the two algorithms more directly, the data in
Figure 9 Is extracted. The error evaluation index in Formula (26)
is used for analysis [30].

⎧⎪⎪⎨⎪⎪⎩

MAE =
1

N

∑N

k=1 (||Uk − Ûk
||)

RMSE =

√
1

N

∑N

k=1

(
Uk − Ûk

)2
. (26)

In the formula: MAE is the average absolute error; RMSE is the
root mean square error; Uk is the actual value of the terminal
voltage at time k; Ûk is the voltage simulation value at time k; N

is the number of experimental data.
The calculated evaluation results are shown in Table 2.
It can be seen from the table that the average absolute error

and root mean square error of the VFFRLS algorithm are
smaller than RLS. Therefore, the accuracy of VFFRLS algo-
rithm is higher. It realizes the parameters update of the model
and improves the accuracy of prediction results.

5.3 Verification of current discharge at
different rates

At the ambient temperature of 20◦C, 1C, 2C, and 3C discharge
experiments were carried out for the battery module. The
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LIU ET AL. 11

FIGURE 10 Simulation temperature of battery module in 1C to 3C
discharge experiment at 20◦C.

temperature and voltage changes of the battery cells were
recorded. At the same time, the constructed lithium-ion batter-
ies thermoelectric coupling model based on digital twin is used
to carry out simulation analysis under the same experimental
conditions to verify the accuracy of the model.

The temperature of cells in the battery module is analyzed.
Considering that the center temperature of the battery module
is high and the risk probability is high, the center cell ⑧, edge
cell ⑦ and corner cell ① of the module are selected as samples.
The selection principles of cells can be summarized as follows.
It can be seen from Figures 3 and 6 that the battery module has
a centrally symmetrical structure. This paper focuses on the sim-
ulation analysis of a single battery module, ignoring the mutual
influence between modules. It is assumed that the internal mate-
rial is isotropic, and the current density at each position inside
is equal during operation in the paper. It can be considered that
the temperature changes of corner cells ① ③ 13© 15© are almost the
same during the charging and discharging process. Therefore,
the author selected corner cell ① for verification. The selection
principles of edge cells are the same as that of corner cells. The
temperature changes obtained are shown in Figure 10. It can be
seen from the figure that the center temperature of the battery
module is high and the corner temperature is low, and as the bat-
tery discharge rate increases, the battery temperature increases.
Therefore, it is particularly important to monitor the temper-
ature change of lithium-ion batteries. Reasonable and effective
decisions can be made according to the temperature to prevent
over-temperature operation.

Considering the high temperature at the center of the battery
module, the probability of accidents is high. The central battery
cell ⑧ of the battery module is selected for further temperature
and voltage verification. Under the 1C to 3C discharge experi-
ment, the experimental temperature and simulation temperature
of the center cell ⑧ is shown in Figure 11.

From the temperature comparison results in the Figure 11,
It can be seen that the temperature of the cell is rising during

FIGURE 11 1C to 3C discharge experimental temperature and
simulation temperature of cell ⑧.

FIGURE 12 1C to 3C discharge experimental voltage and simulation
voltage of cell ⑧.

the discharge process. Under 1C, 2C, and 3C discharge rates, the
temperature rises rapidly at the initial stage of discharge, and rel-
atively flat in the later stage. As the discharge rate increases, the
steady-state temperature of the cell also increases. Compared
with the experimental results, it can be seen that the simulation
temperature error of the discharge process is within 1◦C, which
verifies the accuracy of the model.

Under the 1C to 3C discharge experiment, the experimental
voltage and simulation voltage of the center battery ⑧ is shown
in Figure 12.

From the voltage comparison results in the Figure 12, It can
be seen that the voltage of the cell is droping during the dis-
charge process. Compared with the experimental results, it can
be seen that as the rate increases, the relative error at the end
of the discharge gradually increases. The error at the end of
3C discharge reaches 1.2%, but the error is controlled within
0.35% at the low rate 1C discharge stage, which verifies the
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12 LIU ET AL.

accuracy of the method proposed in this paper in engineering
applications.

6 CONCLUSION

This paper proposes a construction method of lithium-ion bat-
teries thermoelectric coupling model based on digital twin.
Through simulation analysis, the calculation efficiency and
accuracy of the model are verified. The main conclusions
are:

1. The digital twin structure system is proposed. Consider-
ing the coupling between the equivalent circuit model and
the thermodynamic model of the lithium-ion batteries, the
thermoelectric coupling model based on digital twin is estab-
lished on ANSYS TwinBuilder. It can evaluate operating
status more efficiently and accurately so as to reduce the
probability of fire, explosion and other safety accidents. It
has reference significance for the development of batteries
digital twin technology.

2. Based on ANSYS TwinBuilder, the order of thermody-
namic model is reduced. The simulation accuracy is high
and the simulation time is reduced to the second level,
which improves the simulation efficiency. It can guaran-
tee the real-time simulation of the model, and provides an
effective method for the simulation, design and optimization
management of lithium-ion batteries.

3. The VFFRLS algorithm is used to realize the online iden-
tification of the equivalent circuit model parameters in
the lithium-ion battery thermoelectric coupling model. The
problem of updating the model parameters is solved. It
enhances the interactive feedback between the physical
devices and virtual models and improves the real time
mapping ability of the model.
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